Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Formate is the hydrogen donor for the anaerobic ribonucleotide reductase from Escherichia coli.

Identifieur interne : 001227 ( Main/Exploration ); précédent : 001226; suivant : 001228

Formate is the hydrogen donor for the anaerobic ribonucleotide reductase from Escherichia coli.

Auteurs : E. Mulliez [France] ; S. Ollagnier ; M. Fontecave ; R. Eliasson ; P. Reichard

Source :

RBID : pubmed:7568012

Descripteurs français

English descriptors

Abstract

During anaerobic growth Escherichia coli uses a specific ribonucleoside-triphosphate reductase (class III enzyme) for the production of deoxyribonucleoside triphosphates. In its active form, the enzyme contains an iron-sulfur center and an oxygen-sensitive glycyl radical (Gly-681). The radical is generated in the inactive protein from S-adenosylmethionine by an auxiliary enzyme system present in E. coli. By modification of the previous purification procedure, we now prepared a glycyl radical-containing reductase, active in the absence of the auxiliary reducing enzyme system. This reductase uses formate as hydrogen donor in the reaction. During catalysis, formate is stoichiometrically oxidized to CO2, and isotope from [3H]formate appears in water. Thus E. coli uses completely different hydrogen donors for the reduction of ribonucleotides during anaerobic and aerobic growth. The aerobic class I reductase employs redox-active thiols from thioredoxin or glutaredoxin to this purpose. The present results strengthen speculations that class III enzymes arose early during the evolution of DNA.

DOI: 10.1073/pnas.92.19.8759
PubMed: 7568012
PubMed Central: PMC41046


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Formate is the hydrogen donor for the anaerobic ribonucleotide reductase from Escherichia coli.</title>
<author>
<name sortKey="Mulliez, E" sort="Mulliez, E" uniqKey="Mulliez E" first="E" last="Mulliez">E. Mulliez</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratoire d'Etudes Dynamiques et Structurales de la Sélectivité, Centre National de la Recherche Scientifique 332, Université Joseph Fourier, Grenoble, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire d'Etudes Dynamiques et Structurales de la Sélectivité, Centre National de la Recherche Scientifique 332, Université Joseph Fourier, Grenoble</wicri:regionArea>
<placeName>
<region type="region">Auvergne-Rhône-Alpes</region>
<region type="old region">Rhône-Alpes</region>
<settlement type="city">Grenoble</settlement>
</placeName>
<orgName type="university">Université Joseph Fourier</orgName>
</affiliation>
</author>
<author>
<name sortKey="Ollagnier, S" sort="Ollagnier, S" uniqKey="Ollagnier S" first="S" last="Ollagnier">S. Ollagnier</name>
</author>
<author>
<name sortKey="Fontecave, M" sort="Fontecave, M" uniqKey="Fontecave M" first="M" last="Fontecave">M. Fontecave</name>
</author>
<author>
<name sortKey="Eliasson, R" sort="Eliasson, R" uniqKey="Eliasson R" first="R" last="Eliasson">R. Eliasson</name>
</author>
<author>
<name sortKey="Reichard, P" sort="Reichard, P" uniqKey="Reichard P" first="P" last="Reichard">P. Reichard</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1995">1995</date>
<idno type="RBID">pubmed:7568012</idno>
<idno type="pmid">7568012</idno>
<idno type="pmc">PMC41046</idno>
<idno type="doi">10.1073/pnas.92.19.8759</idno>
<idno type="wicri:Area/Main/Corpus">001217</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001217</idno>
<idno type="wicri:Area/Main/Curation">001217</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001217</idno>
<idno type="wicri:Area/Main/Exploration">001217</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Formate is the hydrogen donor for the anaerobic ribonucleotide reductase from Escherichia coli.</title>
<author>
<name sortKey="Mulliez, E" sort="Mulliez, E" uniqKey="Mulliez E" first="E" last="Mulliez">E. Mulliez</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratoire d'Etudes Dynamiques et Structurales de la Sélectivité, Centre National de la Recherche Scientifique 332, Université Joseph Fourier, Grenoble, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire d'Etudes Dynamiques et Structurales de la Sélectivité, Centre National de la Recherche Scientifique 332, Université Joseph Fourier, Grenoble</wicri:regionArea>
<placeName>
<region type="region">Auvergne-Rhône-Alpes</region>
<region type="old region">Rhône-Alpes</region>
<settlement type="city">Grenoble</settlement>
</placeName>
<orgName type="university">Université Joseph Fourier</orgName>
</affiliation>
</author>
<author>
<name sortKey="Ollagnier, S" sort="Ollagnier, S" uniqKey="Ollagnier S" first="S" last="Ollagnier">S. Ollagnier</name>
</author>
<author>
<name sortKey="Fontecave, M" sort="Fontecave, M" uniqKey="Fontecave M" first="M" last="Fontecave">M. Fontecave</name>
</author>
<author>
<name sortKey="Eliasson, R" sort="Eliasson, R" uniqKey="Eliasson R" first="R" last="Eliasson">R. Eliasson</name>
</author>
<author>
<name sortKey="Reichard, P" sort="Reichard, P" uniqKey="Reichard P" first="P" last="Reichard">P. Reichard</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="ISSN">0027-8424</idno>
<imprint>
<date when="1995" type="published">1995</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anaerobiosis (MeSH)</term>
<term>Carbon Dioxide (metabolism)</term>
<term>Cytidine Triphosphate (metabolism)</term>
<term>Deoxycytosine Nucleotides (biosynthesis)</term>
<term>Escherichia coli (enzymology)</term>
<term>Formates (metabolism)</term>
<term>Free Radicals (MeSH)</term>
<term>Glycine (metabolism)</term>
<term>Iron-Sulfur Proteins (isolation & purification)</term>
<term>Iron-Sulfur Proteins (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Ribonucleotide Reductases (classification)</term>
<term>Ribonucleotide Reductases (isolation & purification)</term>
<term>Ribonucleotide Reductases (metabolism)</term>
<term>Substrate Specificity (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Anaérobiose (MeSH)</term>
<term>Cytidine triphosphate (métabolisme)</term>
<term>Dioxyde de carbone (métabolisme)</term>
<term>Escherichia coli (enzymologie)</term>
<term>Ferrosulfoprotéines (isolement et purification)</term>
<term>Ferrosulfoprotéines (métabolisme)</term>
<term>Formiates (métabolisme)</term>
<term>Glycine (métabolisme)</term>
<term>Nucléotides désoxycytidyliques (biosynthèse)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Radicaux libres (MeSH)</term>
<term>Ribonucleotide reductases (classification)</term>
<term>Ribonucleotide reductases (isolement et purification)</term>
<term>Ribonucleotide reductases (métabolisme)</term>
<term>Spécificité du substrat (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Deoxycytosine Nucleotides</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="classification" xml:lang="en">
<term>Ribonucleotide Reductases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="isolation & purification" xml:lang="en">
<term>Iron-Sulfur Proteins</term>
<term>Ribonucleotide Reductases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon Dioxide</term>
<term>Cytidine Triphosphate</term>
<term>Formates</term>
<term>Glycine</term>
<term>Iron-Sulfur Proteins</term>
<term>Ribonucleotide Reductases</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Nucléotides désoxycytidyliques</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="fr">
<term>Ribonucleotide reductases</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Ferrosulfoprotéines</term>
<term>Ribonucleotide reductases</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cytidine triphosphate</term>
<term>Dioxyde de carbone</term>
<term>Ferrosulfoprotéines</term>
<term>Formiates</term>
<term>Glycine</term>
<term>Ribonucleotide reductases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Anaerobiosis</term>
<term>Free Radicals</term>
<term>Oxidation-Reduction</term>
<term>Substrate Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Anaérobiose</term>
<term>Oxydoréduction</term>
<term>Radicaux libres</term>
<term>Spécificité du substrat</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">During anaerobic growth Escherichia coli uses a specific ribonucleoside-triphosphate reductase (class III enzyme) for the production of deoxyribonucleoside triphosphates. In its active form, the enzyme contains an iron-sulfur center and an oxygen-sensitive glycyl radical (Gly-681). The radical is generated in the inactive protein from S-adenosylmethionine by an auxiliary enzyme system present in E. coli. By modification of the previous purification procedure, we now prepared a glycyl radical-containing reductase, active in the absence of the auxiliary reducing enzyme system. This reductase uses formate as hydrogen donor in the reaction. During catalysis, formate is stoichiometrically oxidized to CO2, and isotope from [3H]formate appears in water. Thus E. coli uses completely different hydrogen donors for the reduction of ribonucleotides during anaerobic and aerobic growth. The aerobic class I reductase employs redox-active thiols from thioredoxin or glutaredoxin to this purpose. The present results strengthen speculations that class III enzymes arose early during the evolution of DNA.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">7568012</PMID>
<DateCompleted>
<Year>1995</Year>
<Month>10</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0027-8424</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>92</Volume>
<Issue>19</Issue>
<PubDate>
<Year>1995</Year>
<Month>Sep</Month>
<Day>12</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>Formate is the hydrogen donor for the anaerobic ribonucleotide reductase from Escherichia coli.</ArticleTitle>
<Pagination>
<MedlinePgn>8759-62</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>During anaerobic growth Escherichia coli uses a specific ribonucleoside-triphosphate reductase (class III enzyme) for the production of deoxyribonucleoside triphosphates. In its active form, the enzyme contains an iron-sulfur center and an oxygen-sensitive glycyl radical (Gly-681). The radical is generated in the inactive protein from S-adenosylmethionine by an auxiliary enzyme system present in E. coli. By modification of the previous purification procedure, we now prepared a glycyl radical-containing reductase, active in the absence of the auxiliary reducing enzyme system. This reductase uses formate as hydrogen donor in the reaction. During catalysis, formate is stoichiometrically oxidized to CO2, and isotope from [3H]formate appears in water. Thus E. coli uses completely different hydrogen donors for the reduction of ribonucleotides during anaerobic and aerobic growth. The aerobic class I reductase employs redox-active thiols from thioredoxin or glutaredoxin to this purpose. The present results strengthen speculations that class III enzymes arose early during the evolution of DNA.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mulliez</LastName>
<ForeName>E</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire d'Etudes Dynamiques et Structurales de la Sélectivité, Centre National de la Recherche Scientifique 332, Université Joseph Fourier, Grenoble, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ollagnier</LastName>
<ForeName>S</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fontecave</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Eliasson</LastName>
<ForeName>R</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Reichard</LastName>
<ForeName>P</ForeName>
<Initials>P</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003845">Deoxycytosine Nucleotides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005561">Formates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005609">Free Radicals</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007506">Iron-Sulfur Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0YIW783RG1</RegistryNumber>
<NameOfSubstance UI="C030544">formic acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>142M471B3J</RegistryNumber>
<NameOfSubstance UI="D002245">Carbon Dioxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>2056-98-6</RegistryNumber>
<NameOfSubstance UI="C024107">2'-deoxycytidine 5'-triphosphate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>65-47-4</RegistryNumber>
<NameOfSubstance UI="D003570">Cytidine Triphosphate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.17.4.-</RegistryNumber>
<NameOfSubstance UI="D012264">Ribonucleotide Reductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>TE7660XO1C</RegistryNumber>
<NameOfSubstance UI="D005998">Glycine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000693" MajorTopicYN="N">Anaerobiosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002245" MajorTopicYN="N">Carbon Dioxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003570" MajorTopicYN="N">Cytidine Triphosphate</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003845" MajorTopicYN="N">Deoxycytosine Nucleotides</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005561" MajorTopicYN="N">Formates</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005609" MajorTopicYN="N">Free Radicals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005998" MajorTopicYN="N">Glycine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007506" MajorTopicYN="N">Iron-Sulfur Proteins</DescriptorName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012264" MajorTopicYN="N">Ribonucleotide Reductases</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1995</Year>
<Month>9</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1995</Year>
<Month>9</Month>
<Day>12</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1995</Year>
<Month>9</Month>
<Day>12</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">7568012</ArticleId>
<ArticleId IdType="pmc">PMC41046</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.92.19.8759</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Adv Enzymol Relat Areas Mol Biol. 1990;63:349-419</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2407066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1974 Aug 10;249(15):4858-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4152559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1992 Oct 13;31(40):9733-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1382592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1992 Dec 15;267(35):25541-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1460049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1966 Aug 12;24(3):418-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5967105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Feb 10;270(6):2443-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7852304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1976 Feb 2;62(1):151-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1248477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1989 Jul 25;264(21):12249-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2663852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1989 Aug 25;264(24):13963-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2668278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1992 Dec 15;267(35):25548-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1460050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):577-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8421692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 Feb 5;268(4):2296-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8381402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1993 Mar;175(6):1590-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8449868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1993 Jun 18;260(5115):1773-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8511586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 1993 Aug;21 ( Pt 3)(3):731-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8135930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1993 Dec 15;197(2):792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8267617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Microb Physiol. 1993;35:71-109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8310883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1994 Aug 18;370(6490):533-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8052308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1994 Aug 1;301 ( Pt 3):625-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8053888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1994 Oct 25;33(42):12676-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7918494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Oct 21;269(42):26052-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7929317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Oct 21;269(42):26116-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7929323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Enzymol Relat Areas Mol Biol. 1992;65:147-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1570768</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Auvergne-Rhône-Alpes</li>
<li>Rhône-Alpes</li>
</region>
<settlement>
<li>Grenoble</li>
</settlement>
<orgName>
<li>Université Joseph Fourier</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Eliasson, R" sort="Eliasson, R" uniqKey="Eliasson R" first="R" last="Eliasson">R. Eliasson</name>
<name sortKey="Fontecave, M" sort="Fontecave, M" uniqKey="Fontecave M" first="M" last="Fontecave">M. Fontecave</name>
<name sortKey="Ollagnier, S" sort="Ollagnier, S" uniqKey="Ollagnier S" first="S" last="Ollagnier">S. Ollagnier</name>
<name sortKey="Reichard, P" sort="Reichard, P" uniqKey="Reichard P" first="P" last="Reichard">P. Reichard</name>
</noCountry>
<country name="France">
<region name="Auvergne-Rhône-Alpes">
<name sortKey="Mulliez, E" sort="Mulliez, E" uniqKey="Mulliez E" first="E" last="Mulliez">E. Mulliez</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001227 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001227 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:7568012
   |texte=   Formate is the hydrogen donor for the anaerobic ribonucleotide reductase from Escherichia coli.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:7568012" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020